skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Robinson-Rechavi, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Robinson-Rechavi, Marc (Ed.)
    Transcript annotations play a critical role in gene expression analysis as they serve as a reference for quantifying isoform-level expression. The two main sources of annotations are RefSeq and Ensembl/GENCODE, but discrepancies between their methodologies and information resources can lead to significant differences. It has been demonstrated that the choice of annotation can have a significant impact on gene expression analysis. Furthermore, transcript assembly is closely linked to annotations, as assembling large-scale available RNA-seq data is an effective data-driven way to construct annotations, and annotations are often served as benchmarks to evaluate the accuracy of assembly methods. However, the influence of different annotations on transcript assembly is not yet fully understood. We investigate the impact of annotations on transcript assembly. Surprisingly, we observe that opposite conclusions can arise when evaluating assemblers with different annotations. To understand this striking phenomenon, we compare the structural similarity of annotations at various levels and find that the primary structural difference across annotations occurs at the intron-chain level. Next, we examine the biotypes of annotated and assembled transcripts and uncover a significant bias towards annotating and assembling transcripts with intron retentions, which explains above the contradictory conclusions. We develop a standalone tool, available athttps://github.com/Shao-Group/irtool, that can be combined with an assembler to generate an assembly without intron retentions. We evaluate the performance of such a pipeline and offer guidance to select appropriate assembling tools for different application scenarios. 
    more » « less